
Laser and Panicle Beams (2002). 20, 569-575. Printed in the USA. 
Copyright ID 2002 Cambridge University Pres:.. 0263-0346/02 $16.00 
001: 10.1017/80263034602204139 

Mesh refjnement for particle-in-cell plasma simulations: 
Applications to and benefits for heavy ion fusion 

I-L. VAy\l P. COLELLA,I P. McCORQUODALE,] B. VAN STRAALEN,I 
A. FRIEDMAN;~ AND D.P. GROTE2 

1 Lawrence Berkeley National Laboratory, Berkeley, California 94704, USA 
~Lawrence Livermore National Laboratory. Livermore. California 94551, USA 

(RECEIVED 27 May 2002: ACCEPTED 17 June 2002) 

Abstract 

The numerical simulation of the driving beams in a heavy ion fusion power plam is a chaHenging task, and simulation 
of th'e power plant as a whole, or even of the driver, is not yet possible. Despite the rapid progress in computer power, 
past and anticipated, one must consider the use of the most advanced numerical techniques, if we are to reach our goal 
expeditiously. One of the difficulties of these simulations resides in the disparity of scales, in time and in space, which 
must be resolved. When these disparities are in distinctive zones ofthe simulation region, a method which has proven to 
be effective in o'ther areas (e.g" fluid dynamics simulations) is the mesh refinement technique. We discuss the challenges 
posed by the implementation of this technique into plasma simulations (due to the presence of particles and electro­
magnetic waves). We present the prospects for and projected benefits of its application to heavy ion fusion, in particular 
to the simulation of the ion source and the final beam propagation in the chamber. A collaboration project is under way 
at Lawrence Berkeley National Laboratory between the Applied Numerical Algorithms Group (ANAG) and the Heavy 
Ion Fusion group to couple the adaptive mesh refinement library CHOMBO developed by the ANAG group to the 
particle-in-cell accelerator code WARP developed by the Heavy Ion Fusion-Virtual National Laboratory. We describe 
our progress and present our initial findings. 

Keywords: Heavy ion fusion; Mesh refinement: Particle in cell; Plasma simulation 

1. INTRODUCTION 

Integrated end-to-end simulation of a heavy ion fusion fa­
cility, or even the driver, is not yet possible with current 
software and hardware capabilities. Given the range of pa­
rameters that should be scanned by such types of simula­
tions, relying solely on the progress in computer hardware 
power is not sufficient. Development and introduction into 
our codes of more efficient numerical techniques must be 
part of the effort. In this article, we report on the status of an 
ongoing effort aimed at introducing the adaptive mesh re­
finement (AMR) technique into particle-in-cell (PIC) mod­
eling. This is part of a more general effort to apply AMR to 
plasma modeling. While we currently concentrate on imple­
menting AMR into electrostatic PIC codes, we also consider 
their appJication to electromagnetic models and Vlasov sim­
ulations. In the first part of this article, we present the mesh 
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refinement concept, a brief history of AMR (which was 
successfully developed for fluid modeling), and its potential 
benefits to heavy ion fusion. The second part will examine 
the main issues in applying AMR to models which contain 
particles and waves. The ongoing development of an elec­
trostatic AMR-PIC code is based on the coupling of two 
existing packages: Chombo (http://seesar.Jbl.gov / ANAG/ 
chombo) for AMR and WARP (Grote et al.. 1996) for PIC. 
We present the approach and status of this effort in the third 
part, while results of AMR-PIC simulations realized with 
a RZ prototype developed in WARP are presented in the 
last part. 

2. THE MESH REFINEMENT METHOD 

The mesh refinement method (MR) is a technique for refin­
ing certain regions of the physical domain in a grid-based 
calculation. MR serves as a "numerical microscope," al1ow­
ing researchers to "zoom in" on the specific regions of a 
problem that are most important to its solution. Rather than 
requiring that the whole calculation have the same spatial 
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resolution, MR allows different resolutions in different re­
gions of the problem. Areas of interest are covered with a 
finer mesh than the surrounding regions; for time-dependent 
problems, the finer meshes are also, in general, advanced 
with a smaller time step. The avoidance of having to per­
form the entire calculation at the finest resolution makes 
possible the solution of a wider range of problems. Some­
times, the areas of the physical domain that need refinement 
evolve and automatic redistribution of the refinement be­
comes necessary as the simulation unfolds; this is known as 
adaptive mesh refinement (AMR). 

The hierarchical structured grid approach now known as 
AMR was first developed by Berger and Oliger (1984) for 
hyperbolic partial differential equations. The approach to 
adaptive gridding used here was developed for conservation 
laws and demonstrated to be highly successful for gas dy­
namics by Berger and Colella (1989) in two dimensions. 
Bell et al. (1991) extended the methodology to three dimen­
sions. More recently, AMR has been extended to a variety of 
problems and algorithm choices, including, but not limited 
to, solving the variable-coefficient Poisson equation, the 
Helmholtz equation, the system of hyperbolic conservation 
laws governing inviscid gas dynamics, the compressible and 
incompressible Navier-Stokes equations, and the equations 
that govern reacting flows, such as those that occur in pre­
mixed and nonpremixed combustion. The heavy ion fusion 
program will benefit from the introduction of the AMR 
technique in several areas of its modeling effort, leading to 
integrated simulations of the driver, from source to target. 
The modeling of the particle injector in detail offers a spe­
cific challenge due to the presence of a singularity in the 
solution at the emitting surface. Convergence studies of the 
High-Current Experiment (HCX) injector at the Lawrence 
Berkeley National Laboratory (LBNL), using an axisym­
metric (RZ) prototype AMR-Poisson solver, have shown 
that a very fine resolution is needed around the emitting 
surface (see below). In the accelerator, accurate modeling of 
halo generation calls for a detailed description of the beam 
edge which the AMR technique will render accessible 
through both mesh refinement and adaptivity capabilities. 
In the fusion chamber, a self-consistent simulation of a beam 
array is still out of reach, and the introduction of AMR 
would allow more rapid progress. To take full advantage of 
different approximations of the Vlasov-Maxwell system, 
we plan to introduce AMR into our PIC electrostatic and 
electromagnetic models, and ultimately into our Vlasov 
model. The implementation of the PIC electrostatic capabil­
ity is under way, while the other implementations have been 
left for future work. 

3. APPLICATION TO PARTICLE-IN-CELL 
PLASMA SIMULATION 

The application of the mesh refinement technique to PIC 
plasma simulation needs special care to avoid the introduc­
tion of spurious effects into the model, or at least to mini-
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mize them. The main new challenge is the presence of 
macroparticles. The introduction of AMR introduces a spu­
rious force that may potentially alter the particle motion to 
an unacceptable level. Also, some implementations of AMR 
may violate conservation laws and/or introduce nonphysi­
cal nonlinearities (anharmonic forces). Finally, in the case 
of electromagnetic PIC simulations, the introduction of AMR 
is challenging due to the reflection of high frequency waves 
at the boundary of a refinement patch and, in general, straight­
forward implementations of AMR into electromagnetic codes 
yield unstable algorithms. 

3.1. Gauss theorem and field nonlinearities 

Severa] methods can be envisioned to couple a fine grid and 
the coarser grid in which it is enclosed; we discuss two of 
them. The most straightforward method consists of, once 
the solution has been calculated to the desired precision on 
the coarse grid, getting the fine grid patch boundary values 
(for Dirichlet boundaries) through interpolation from the 
coarse grid solution. All the Dirichlet boundaries having 
been set on the fine grid, a solution is then computed in the 
interior, and the procedure is recursively performed for any 
refinement patch that it contains (this is the procedure that 
has been used in the example given in the next subsection 
"issues with macroparticles"). 

Another method, which is the default in the Chombo 
package (available at http://seesar.lbl.gov/ANAG / chombo), 
consists of iterating the solution back and forth between a 
patch and its mother grid. As in the other method, Dirichlet 
boundary values for the fine grid are interpolated from the 
coarse grid solution. Then, a specified number of iterations 
are performed in the fine grid and the fine and coarse grid 
solutions are reconciled during a "synchonization" step which 
consists of enforcing the fine grid solution on the coarse grid 
nodes located inside the fine grid patch. This procedure is 
iterated until convergence. 

While the second method has been shown to be of higher 
order in accuracy, it violates Gauss' Law under a nodal 
implementation and modifies the coarse grid solution, even­
tually introducing otherwise nonpresent nonlinearities into 
that solution. These two effects may be issues for accelera­
tor modeling. Both methods are being implemented and will 
be compared. 

3.2. Issues with macroparticles 

One cornerstone of PIC modeling consists of defining the 
charge deposition (from macroparticles to the grid) and field 
gathering (from the grid to the macroparticles) in such a way 
to avoid generating spurious self-force. However, it can be 
shown that, for electrostatic, the introduction of mesh re­
finement does create a spurious image of a particle at the 
interface between a coarse and a fine grid refinement patch. 
It is easy to demonstrate this effect on a simple example: a 
64 X 64 square regular grid ("mother" grid) of undimen-



Mesh refinement for PIC plasma simulations 

sioned length L with a local refinement patch consisting of a 
32 X 32 square regular grid of length L/4. The centers of the 
mother grid and the patch grid coincide. A single particle is 
initialized at a position {Xo, Yo} in the fine grid. For each 
time step, the charge (undimensioned) of the particle is 
deposited on both grids using linear weighting, The field is 
computed on the coarse grid using a Poisson solver, assum­
ing Dirichlet boundary condition cp = 0 at the boundaries. 
The solution is then linearly interpolated from the coarse 
grid onto the fine grid boundaries and the field solution is 
solved on the fine grid (the first method described in the 
preceding subsection). The field is then linearly interpolated 
back to the particle using the same weighting function as for 
the charge deposition. The particle is finally advanced using 
a leap-frog pusher. If the particle is outside the fine grid, 
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only the coarse grid is considered for the calculation. Once 
the particle reaches the coarse grid boundaries, it experi­
ences a specular reflection. The fine grid is reactivated as 
soon as the particle reenters it. 

Figure 1 displays the results for a particle initialized at 
{Xo• Yo} {26,32} (in the coarse grid mesh size units) and 
vxo = VyO = O. The results using the set of two grids as 
described above are compared to a reference case where 
the same problem is run on a uniform 128 X 128 square 
regular grid (so that it has the same resolution as the fine 
grid patch). 

The particle is attracted by its image at the boundary and 
moves towards the closest boundary. As it should normally 
do and does in the reference case, the particle moves toward 
the closest boundary and bounces back, and so on. But in the 

Spurious "image" Test particle 

O:lrrect image 

~ • 

a) 

35 

~ ·c 
15 0) 

.... 
Q) 

10 .s::. 

~ 
5 L.-

X 

b) 

1\ 
\ 
\ 
\ 

\ 
\ .. 

I 

L 

I 

, 

,..-

II 

." 

"'~ 

I--

~ 

~ 

'-

.- Patch 
grid 

"Mother" grid 

-- reference case (one grid) 
------* with mesh refinem ent 

100 200 300 400 500 600 700 800 900 1000 

t (time steps) 

Fig. I. Effect of mesh refinement on a single particle motion. Panel a shows the grids configuration. A test particle is initialized in the 
fine grid patch and is attracted by its image due to the metallic boundary (at the coar<;;e grid border), In b. the time evolution of 
the particle position is given for an "exact" case (plain line) and for a case with mesh refinement (dashed line). The perturbation of the 

trajectory suggests that the equivalent of a spurious "image" of the real particle is introduced by the mesh refinement. 
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case of the two-grid set, the particle is reflected at the inter­
face between the fine grid patch and the coarse mother grid, 
meaning that an effect equivalent to the presence of a spu­
rious repulsive image force has been created at the interface 
by the local refinement. Techniques (not described here) to 
mitigate this effect have been explored and will be imple­
mented if tests on rea) problems show that it is needed. 

3.3. Electromagnetic waves 

The modeling of electromagnetic waves poses a specific 
challenge to the use of mesh refinement and, more gener­
ally, to the use of non-Cartesian regular grids. This is due to 
the fact that wave propagation in vacuum is a process that 
has an "infinite memory" of past events so that errors tend to 
accumulate, leading to instability. By nature, a given grid 
can transport only waves whose wavelengths exceed roughly 
twice the mesh spacing. Hence, when refining an area by 
patching a fine grid on a coarse one, a band of wavelengths 
that can be resolved on the finer grid cannot be resolved 
on the coarse one, and are reflected at the fine-coarse grid 
interface. Such reflections are evidently unphysical and can 
build the field energy up by mUltiple reflections on the 
boundaries of the fine grid. Moreover, as shown in Yay 
(2001), the reflection of these waves at the interface is as­
sociated with an amplification of the reflected wave that can 
reach a factor of lOin the case of refinement both in space 
and in time (smaller time steps in the refined region) of a 
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factor of 3, for a scheme based on "jumps" of fine grid 
points over alternate coarse grid points and linear interpola­
tions to connect the two grids. Some improvement can be 
obtained by applying an energy conserving scheme (Collino 
et at., 1999) which forces, by construction, the reflection 
factor to be unity. Adjustable damping, as developed in 
Friedman (1990), can also help by damping the short wave­
lengths that constitute these spurious reflected waves, at the 
price of damping physical waves at the same frequencies. 
Another approach (Vay, 2001) consists in reducing the re­
flection factor by formally rewriting the multidimensional 
wave equation into monodimensional wave equations that 
are split upon the direction of propagation of the waves 
along an axis. Absorption of the considered waves at effi­
ciency comparable to the first order, or eventually second 
order, Engquist and Majda (1977) absorbing boundary con­
dition can be achieved using this technique. Further reduc­
tion of the reflection factor by orders of magnitudes may 
require the use of patches surrounded by perfectly-matched­
layer (PML) (Berenger, 1994; I-L. Vay, 2002) regions. For 
such a technique, for each refinement patch applied to a 
coarser grid, an additional patch having the same resolution 
as does the coarse grid will be needed. This technique relies 
on the fact that short wavelengths present in the fine-gridded 
patch will be created by sources located inside this same 
patch only. Hence, the short wavelengths can be computed 
on the fine patch, independently of the whole domain cal­
culation, and be added to the coarse grid solution, pro-

Fig.2. Image from movie of an end-to-end WARP simulation of the HeX experiment. This shows the beam, emitted from the source 

(left), propagating through the first quadrupoles. 
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Fig. 3. Snapshot of [he particle distribution (dark yellow) at the end of a HCX source simulation. Color contour plot of the electrostatic 
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has been used in one of the runs. 

4. DEVELOPMENT OF THE 
WARP-CHOMBO PACKAGE 
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vided that the long-wavelength information related to the 
same sources have also been calculated independently on 
the coarse grid patch and substracted from the whole do­
main solution. Compared to usual mesh refinement tech­
niques, this approach has the advantage of removing the 
coupling between the coarse grid and the patch bound­
aries, removing associated problems and facilitating the 
implementation. 

A nodal implementation of a multigrid AMR solver for the 
Poisson equation using Shortly-Weller ("cut cell") discret­
ization of the Laplacian operator (to account for internal 
boundaries at subcell resolution) has been developed in 
Chombo. In our configuration, a library containing Chombo's 
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(almost) exactly the emittance profile at a reduce cost (factor of 4 in this case). 
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Fig. 5, Phase-space projections of the beam slice distribution in the r-r' plane at the end of the runs, for 39 em < :: < 40 em (see text 
for rum. labeling description). A higher resolution leads to a smaller hook. Applying a mesh refinement around the emitting area allows 
us to recover the correct length of the hook at a reduced COSI (factor of 4 in this case), 

executable routines is provided to the WARP linker which 
merges the two packages together. Appropriate calls to 
Chombo routines are made by WARP FORTRAN's routines 
which are triggered by a flag which is set up by the user in 
WARP's Python script interface. For specialized use, some 
of the Chombo routines. such as itsAMR Poisson solver, are 
callable directly from WARP's Python interface. 

While the production-level general three-dimensional 
AMR Poisson solver is being developed in the Chombo 
package, we have built a prototype axisymmetric (RZ) 
AMR-Poisson solver on the foundations of WARP's r-z 
Poisson solver. This has allowed us to begin to explore the 
benefits of AMR for injector simulation, as described in the 
next section. 

5. EXAMPLE: SIMULATION OF THE HCX 
SOURCE WITH WARP-RZ 

Figure 2 shows a snapshot taken from a movie of an end-to­

end HeX simulation. As explained in Haber et al. (2002), a 

successful end-to-end simulation requires a very detailed 
simulation of the front end. We present some results ob­
tained on the convergence study of the HCX source simula­
tion. To focus on the source, no quadrupole were considered, 
which allowed us to benefit from the axisymmetry of the 
system, thus reducing the dimensionality of the simulations. 
Assuming that we are interested only in the steady-state 
solution, the simulations were performed in a "quasi time­
dependent" mode, where the electrostatic field was solved 
every 10 time steps. In all the runs, we have used a time step 
of 1 ns and the run was stopped after 1000 time steps (1 J-LS 
physical time). A snapshot of the particle distribution at the 
end of the run is given in Figure 3 for a calculation using a 
grid of nr X nz 56 x 640 cells (giving DX 3.6 mm and 
5z = 0.6 mm). The number of cells was chosen so that there 
are at least 10 grid lines crossing the emitting region in each 
dimension (the emitting surface has a radius of 5.08 cm and 
an extension of 6.45 mm in z). We will refer to this run as the 
"base run." We define the simulation parameters of other 

runs by two integers, ngj and npj, which represent, respec-
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tively, the multiplicative factor for the number of cells in 
each dimension and the number of particles, with respect to 
the base run. Hence, a run labeled {ngf = 2, npf = 4} had a 
grid of 112 X 1280 cells and used four times the number of 
macroparticles of the base run. We ran the cases {ngf = 1, 
npf = J} (i.e., base grid), {ngf 2, npf = 4}, {ngf = 4, 
npf = 16}, and {ngf 2, npj = 4, with mesh refinement}. 
For the last case, a mesh refinement patch having two times 
the resolution of the initial grid in each dimension was ap­
pI ied on the emitter region. The limits of the patch are shown 
by a red line on Figure 3. Let cc be the computing cost of a 
run; then we have: cc(ngf 4, npf = 16) = 4cc(ngf = 2, 
npf= 4) = 16cc(ngf= 1, npf 1) =4cc(ngf= 2, npf= 4, 
with mesh refinement). Figure 4 and Figure 5 display, re­
spectively, the emittance as a function of z and a beam slice 
phase-space projection, taken at the end of the runs. From 
Figure 4, it follows that higher resolution means a reduction 
of the emittance. From Figure 5, we can infer that this emit­
tance reduction is linked to the length of a hook at the edge 
of the distribution, which also reduces when the resolution 
rises. We remark that we obtained results very close to the 
highest resolution case {ngj 4, npj = 16} with the case 
{ngf = 2, npf 4, with mesh refinement}, at a fourth of the 
computational cost. 

6. CONCLUSION 

We have discussed the potential benefits of the introduction 
of the AMR technique for the heavy ion fusion program, as 
well as the difficulties that arise in its application to plasma 
and accelerator modeling. We have presented the ongoing 
effort of coupling an existing AMR package with the PIC 
code WARP and have shown that a significant reduction 
factor could be obtained in computer time cost on the sim­
ulation of a key issue for HIF. We conclude from this pre­
liminary study that the introduction of the AMR technique 
into beam and plasma simulations offers the potential of 
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more efficient calculations, leading us to reach the goal of 
integrated end-to-end simulation significantly sooner than 
would be possible otherwise. 
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